14 research outputs found

    Hot gas ingestion testing of an advanced STOVL concept in the NASA Lewis 9- by 15-foot low speed wind tunnel with flow visualization

    Get PDF
    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft capable of operating from remote sites, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, it is important that the technologies critical to this unique class of aircraft be developed. Recognizing this need, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results from a test program are presented along with a discussion of the facility modifications allowing this type of testing at model scale. These modifications to the tunnel include a novel ground plane, an elaborate model support which included 4 degrees of freedom, heated high pressure air for nozzle flow, a suction system exhaust for inlet flow, and tunnel sidewall modifications. Several flow visualization techniques were employed including water mist in the nozzle flows and tufts on the ground plane. Headwind (free-stream) velocity was varied from 8 to 23 knots

    Hot gas ingestion characteristics and flow visualization of a vectored thrust STOVL concept

    Get PDF
    A 9.2 percent scale short takeoff and vertical landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the NASA Lewis Research Center 9- by 15-Foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issue for advanced short takeoff and vertical landing aircraft. The Phase 1 test program, conducted by NASA Lewis and McDonnell Douglas Corporation, evaluated the hot ingestion phenomena and control techniques and Phase 2 test program which was conducted by NASA Lewis are both reported. The Phase 2 program was conducted at exhaust nozzles temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/lift improvement devices which reduced the hot gas ingestion. The model support system had four degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity for Phase 1 was varied from 8 to 90 kn, with primary data taken in the 8 to 23 kn headwind velocity range. Phase 2 headwind velocity varied from 10 to 23 kn. Results of both Phase 1 and 2 are presented. A description of the model, facility, a new model support system, and a sheet laser illumination system are also provided. Results are presented over a range of main landing gear height (model height) above the ground plane at a 10 kn headwind velocity. The results contain the compressor face pressure and temperature distortions, total pressure recovery, compressor face temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane temperature and pressure distributions, model airframe heating, and the location of the ground flow separation. Results from the sheet laser flow visualization test are also shown

    RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors

    No full text
    The RET gene encodes a receptor tyrosine kinase that is expressed in neural crest-derived cell lineages. The RET receptor plays a crucial role in regulating cell proliferation, migration, differentiation, and survival through embryogenesis. Activating mutations in RET lead to the development of several inherited and noninherited diseases. Germline point mutations are found in the cancer syndromes multiple endocrine neoplasia (MEN) type 2, including MEN 2A and 2B, and familial medullary thyroid carcinoma. These syndromes are autosomal dominantly inherited. The identification of mutations associated with these syndromes has led to genetic testing to identify patients at risk for MEN 2 and familial medullary thyroid carcinoma and subsequent implementation of prophylactic thyroidectomy in mutation carriers. In addition, more than 10 somatic rearrangements of RET have been identified from papillary thyroid carcinomas. These mutations, as those found in MEN2, induce oncogenic activation of the RET tyrosine kinase domain via different mechanisms, making RET an excellent candidate for the design of molecular targeted therapy. Recently, various kinds of therapeutic approaches, such as tyrosine kinase inhibition, gene therapy with dominant negative RET mutants, monoclonal antibodies against oncogene products, and nuclease-resistant aptamers that recognize and inhibit RET have been developed. The use of these strategies in preclinical models has provided evidence that RET is indeed a potential target for selective cancer therapy. However, a clinically useful therapeutic option for treating patients with RET-associated cancer is still not available
    corecore